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TOOLS FROM DIFFERENTIAL GEOMETRY

Quick Comments:

1. Timely for signal processing. Statistics was a new tool two to three

decades ago; differential geometry is a new tool now.

2. Difficult topic for engineering community but there are rewards. Starting

cost is high. Perhaps, there should be tutorials at conferences.

3. There is a lot more research to be done, especially in applications, and

even in theoretical areas.

4. Such methods are increasingly popular in other areas such as computer

vision and pattern recognition.
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SIGNAL SUBSPACE TRACKING

Passive Sensors

Signal Emitters

For d signal transmitters

observed using n sensors:

yt,i = D(Θt)st + µt,i , i = 1, . . . , k

• st ∈ C
d is the signal amplitude,

• Θt ∈ [0, π)d is the vector of transmitter locations at time t,

• D(Θt) ∈ C
n×d is the matrix of direction vectors, and

• µt,i ∈ C
n is additive noise.

• yt,i ∈ C
n is the ith observation vector at time t.

yt = [yt,1, . . . , yt,k] ∈ C
nk .



SIGNAL SUBSPACE ESTIMATION

Classical Approach

• Assuming, additive white Gaussian noise, µt,i ∼ CN(0, σ2In)
Each time can be treated independently from other times.

• Maximum likelihood estimate (MLE) is derived as follows:

(ŝt, Θ̂t) = argmin
st,Θt

‖yt − D(Θt)st‖2 .

– First, fix Θt and maximize over st:

ŝt = (D†D)−1D†yt , where D ≡ D(Θt).



– Substituting it back, we get

Θ̂t = argmin
Θ

‖(I − D(D†D)−1D†)yt‖2 .

Or,

Θ̂t = argmax
Θ

‖D(D†D)−1D†yt‖2 .

D(D†D)−1D† is the projection onto the subspace (of C
n) spanned

by d columns of D.

– If the columns of D are linearly independent (signal transmitters are

not too close), then a d-dimensional subspace of C
n is of interest.



SIGNAL SUBSPACE ESTIMATION

So, the problem can be solved in two steps:

1. Step 1: Subspace Estimation: A subspace can be represented by an

orthonormal basis (non-uniquely) or by a projection matrix (uniquely).

Task:

• Solve for a basis St such that span(St) = span(Dt).

St is an n × d unitary matrix.

• Or, estimate a projection matrix Pt that best fits the data.

Pt ∈ C
n×n, P †

t = Pt, P 2
t = Pt, rank(Pt) = d.

For computational reasons, we choose a basis representation.

2. Step 2: Angle Estimation: Solve for the angles Θt that best match the

estimated subspace.

This talk is about Step 1.



SIGNAL SUBSPACE TRACKING

plusses denote observations at time t1

dots denote observations at time t2

An interesting problem is subspace tracking when data is occasionally very

bad (transmitter obscuration, noise burst, etc).



SIGNAL SUBSPACE TRACKING

Goal: To utilize dynamics of subspace to improve estimation. To estimate

temporal evolution of subspace rather than individual estimation. Path

estimation instead of point estimation.

Problem Statement: Given measurements y[1:T ] ≡ y1,y2, . . . ,yT ,

estimate the subspace sequence (via unitary bases) S1, S2, . . . , ST .

Filtering: A greedy solution is that given all the measurements up to time t,

estimate the basis St.

Some Issues:

1. On what space this filtering problem is to be solved?

The set of all (complex) d-dimensional subspaces of C
n is called

Grassmann manifold Gn,d.

2. What tools are available to us to solve such a filtering problem?

Kalman Filter? Nonlinear Filtering, or Non-Euclidean Filtering?



KALMAN FILTERING

Use a state equation and an observation equation:

State equation : xt+1 = f(xt) + νt

Observation equation : yt+1 = g(xt+1) + µt

Then, find the mean and covariance associated with the posterior at time t

P (xt|y[1:t]) .

If f and g are known linear functions, (and µt, νt are independent

Gaussian), then Kalman filtering provides exact solution.

Two Problems:

1. Kalman Filter does not directly apply to nonlinear manifolds.

2. We need some form of a state equation on Gn,d. We do have an

observation model.



BAYESIAN NONLINEAR FILTERING

Nonlinear Manifolds: Kalman filtering does not apply, but Monte Carlo

methods do!

Use nonlinear filtering equations: Under usual Markov assumptions,

Predict : P (St+1|y[1:t]) =
∫

St

P (St+1|St)P (St|y[1:t])dSt

Update : P (St+1|y[1:t+1]) =
P (yt+1|St+1)P (St+1|y[1:t])

P (yt+1|y[1:t])

• P (St+1|St): comes from the state equation, or subspace dynamics

• P (yt|St) comes from the likelihood function.

Next, we develop a model for subspace dynamics.



GRASSMANN MANIFOLDS: BACKGROUND

• Let the columns of S ∈ C
n×d denote an orthonormal basis of a

d-dimensional subspace of R
n.

• U(d) = {O ∈ C
d×d|O†O = Id}.

• Define an equivalence class of bases:

[S] = {SO : O ∈ U(d)} .

[S] contains all orthonormal bases that span the same subspace. [S]
denotes a subspace and S denotes a particular basis.

• Grassmann manifold:

Gn,d = {[S] : S ∈ C
n×d, S†S = Id} .

Gn,d has real dimension = 2d(n − d).



GEOMETRY OF GRASSMANN MANIFOLD

• Grassmann manifolds are quotient spaces of unitary groups.

• Consider the embedding: φ : (U(d) × U(n − d)) �→ U(n), given by:

φ(V1, V2) =

⎡
⎣ V1 0

0 V2

⎤
⎦ .

This way φ(U(d), U(n − d)) is a subset of U(n).

• Consider an equivalence relation in U(n):

Q1 ∼ Q2 if and only if Q1 = Q2

⎡
⎣ V1 0

0 V2

⎤
⎦ ,

for some V1 ∈ U(d), and V2 ∈ U(n − d).

The quotient space U(n)/ ∼ or U(n)/(U(d) × U(n − d)) is a

complex Grassmann manifold Gn,d.



GEOMETRY OF UNITARY GROUP

The set of unitary matrices is not a vector space. It is a group under matrix

multiplication.

1. Tangent Spaces:

• At In ∈ C
n×n, the space of vectors (actually, matrices) is given by:

TIn
(U(n)) = {A ∈ C

n×n|A† + A = 0} .

The set of Hermitian skew-symmetric matrices.

• At any other point Q ∈ U(n), the tangent space is:

TQ(U(n)) = {QA ∈ C
n×n|A† + A = 0} .

Assume the usual Euclidean inner product on tangent spaces.



2. Geodesic Flows: Geodesics are one-parameter flows

t �→ Q exp(tA), where A ∈ C
n×n, A† + A = 0 .

This is a geodesic flow starting at Q and in the direction of A.

We want tangent spaces and geodesic flows on Grassmann manifolds.



GEOMETRY OF GRASSMANN MANIFOLD

• Let J =

⎡
⎣ Id

0

⎤
⎦ ∈ C

n×d denote the first d columns of In.

• For any Q ∈ U(n), the matrix [QJ ] ∈ Gn,d. Multiplication on right

projects from U(n) to Gn,d.

• φ induces an embedding dφ from tangent spaces to tangent spaces:

dφ : (TV1(U(d)) × TV2(U(n − d))) �→ Tφ(V1,V2)(U(n)) ,

given by:

dφ(A1, A2) =

⎡
⎣ A1 0

0 A2

⎤
⎦ ,

for some V1 ∈ U(d), and V2 ∈ U(n − d).

• A vector tangent to U(n) projects to a tangent to Gn,d if and only if it is

orthogonal to the range of dφ.



GEOMETRY OF GRASSMANN MANIFOLD

1. Tangent Space: For an [S] ∈ Gn,d, let Q ∈ U(n) such that QJ = S.

Q is not unique; it has to be computed efficiently. Then, the tangent

space

T[S](Gn,d) = {QAJ |A =

⎡
⎣ 0 B

−B† 0

⎤
⎦ , B ∈ C

d×(n−d)} .

2. Geodesic Flow:

A Geodesic in U(n) is also a geodesic in Gn,d as long as it is

orthogonal to every equivalence class it meets

Geodesics on Gn,d is given by one parameter flows:

t �→ Q exp(tA)J .

We will denote the flow by ΨS(t, A) = Q exp(tA)J .



TWO IMPORTANT TASKS

To perform differential calculus and statistics on Gn,d, two operations are

repeatedly used:

1. Exponentiation: Given [S0] and a tangent direction A, find elements

along the geodesic Ψ(t) at t1, t2, . . ..

2. Logarithm: Given two subspaces [S0] and [S1], find the direction A (or

B inside A) such that Ψ(0) = [S0] and Ψ(1) = [S1].

We want to be able to perform these tasks efficiently.



GENERAL BACKGROUND

S0

S1

S1V1

S1V1U1
T

U1S0

U1S0 V1
T

Orbit(    )S0 Orbit(    )S1

Q exp(tB) QT

Q exp(tB) QT

Q exp(tB) QT

• Let the SVD of S†
0S1 ∈ C

d×d be given by (S†
0S1) = U1ΓV1.

• Define canonical bases S0 = S0U1 and S1 = S1V1, and canonical

flow Ψ(t) = Ψ(t)U1 = Q exp(tA)JU1.

• ‖Γ‖ is the length of geodesic between two subspaces.



TASK 1: EXPONENTIATION

Goal: Given S0, Q and B ∈ C
(n−d)×d, construct Ψ(t).

• Let Ũ2ΘU†
1 be the SVD of B†.

• Determine Γ(t) = cos(tΘ) and Σ(t) = sin(tΘ).

• Since Ψ(t) = Q exp(tA)JU1, we have

Ψ̇(0) = Q

⎛
⎝ 0

−B†

⎞
⎠ U1 = −C0Ũ2Θ = −DΘ (1)

for D ≡ C0Ũ2. Compute D using Q, B, Θ, and U1

• Then,

Ψ(t) = S0U1Γ(t) − (C0Ũ2)Σ(t) = S0U1Γ(t) − DΣ(t).

Exponentiation can be accomplished in O(nd2) computations



TASK 2: LOGARITHM

Goal: Given two subspaces [S0] and [S1], and Q, find the direction matrix

B ∈ C
d×(n−d).

• Compute QS1 ∈ C
n×d. Compute its thin CS decomposition, i.e.,

QS1 =

⎛
⎝ X

Y

⎞
⎠ =

⎛
⎝ U1 0

0 U2

⎞
⎠

⎛
⎜⎜⎝

Γ(1)

−Σ(1)

0

⎞
⎟⎟⎠ V T

1

=

⎛
⎝ U1 0

0 Ũ2

⎞
⎠

⎛
⎝ Γ(1)

−Σ(1)

⎞
⎠ V T

1

This decomposition costs O(nd2) (as a generalized SVD).

• Determine Θ via the arcsin or arccos that is numerically reliable, and

evaluate B = Ũ2ΘU†
1 .



SUBSPACE DYNAMICS

We want to model (statistically) evolution of [S0], [S1], . . . , [St] in Gn,d.

Let At =

⎡
⎣ 0 Bt

−B†
t 0

⎤
⎦ be the direction such that:

St+1 = Qt exp(At)J, St = QtJ .

• Zero velocity or Stationary subspace model:

dB(t)
dt

= νt, Bt ∈ C
d×(n−d) ,

where νt is zero-mean, complex Gaussian noise.

• Constant velocity model:

d2B(t)
dt2

= νt, Bt ∈ C
d×(n−d) .

Leads to one-step prior model, P (St+1|St), that is easy to sample from:



SEQUENTIAL MONTE CARLO METHOD

Given samples from the posterior at time t:

S
(i)
t ∼ P (St|y[1:t]), i = 1, 2, . . . , N .

The goal is to generate samples from the posterior at times t + 1.

1. Prediction: Use the prediction equation

P (St+1|y[1:t]) =
∫

St

P (St+1|St)P (St|y[1:t])dSt .

For an S
(i)
t , let S̃

(i)
t+1 ∼ P (St+1|St).

For the constant velocity model, set At = At−1 + µt−1, and set

S̃
(i)
t+1 = Q†

t exp(At)J .



2. Update: Importance Sampling

P (St+1|y[1:t+1]) =
P (yt+1|St+1)P (St+1|y[1:t])

P (yt+1|y[1:t])
.

Set w
(i)
t+1 = P (yt+1|S̃(i)

t+1), and set w̃
(i)
t+1 = w

(i)
t+1/

∑
i w

(i)
t+1.

3. Resampling: Generate

S
(i)
t+1 ∼ {S̃(i)

t+1, i = 1, . . . , N} with probabilities{w̃(i)
t+1, i = 1, . . . , N} .

We have recursively generated samples from the posterior at time t + 1.

We still have to compute an estimated mean subspace, or covariance, or

other statistics.



ESTIMATION OF MEAN SUBSPACE

Definition and estimation of mean on Gn,d.

Let d(S1, S2) be the geodesic distance between S1 and S2 in Gn,d. Also,

let Gn,d be embedded inside C
n×d, and let ‖S1 − S2‖ denote the

Euclidean distance after embedding.



Mean under a probability density function f(p):

• Intrinsic mean:

p̂ = argmin
p∈M

∫
M

d(p, u)2f(u)γ(du) ,

• Extrinsic mean:

p̂ = argmin
p∈M

∫
M

‖p − u‖2f(u)γ(du) ,

This can also be viewed as computing the mean in R
n and then

projecting it back to M . Extrinsic analysis implies emedding the manifold

in a larger Euclidean space, computing the estimate there, and

projecting the solution back on the manifold.

Bound on Estimation Error: Hilbert-Schmidt bound

HSB =
∫

M

d(p̂, u)2f(u)γ(du) .



EXAMPLE OF MEAN ESTIMATION ON A CIRCLE

Given θ1, θ2, . . . , θn ∈ S1.

1. Intrinsic Mean:

d(θ1, θ2) = min{|θ1 − θ2|, |θ1 − θ2 + 2π|, |θ1 − θ2 − 2π|
Then, find the mean

θ̂ = argmin θ
n∑

i=1

d(θ, θi)2 .

Solve this problem numerically.

2. An Extrinsic Mean: Let zi = ejθi ∈ C, i = 1, . . . , n. Then,

ẑ = 1
n

∑n
i=1 zi, and set θ̂ = arg(ẑ).



SAMPLE MEANS ON CIRCLE



BAYESIAN SUBSPACE TRACKING

Toy Experiment:

• Generated signal motion using a smooth Markov process on angular

locations.

• Simulated data using y = D(Θt)st + νt.

Models Assumed:

• Prior Model: Zero velocity model

• Likelihood Model: Additive white Gaussian noise model.

Performance Analysis: Compared three different methods

• Maximum likelihood estimation,

• Adaptive tracking (uses a moving window on data, followed by MLE), and

• Nonlinear tracking on Gn,d.



TRACKING EXPERIMENT 1
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Left panel: Motion of two signal sources

Right panel: Error in subspace estimation using three different methods



TRACKING EXPERIMENT 2
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SUMMARY

• Signal subspace tracking can be posed as that of estimating a stochastic

process on a Grassmann manifold.

• It is important, and interesting, to utilize the intrinsic geometry of the

underlying manifold.

• A prior on subspace motion, maybe a smoothing prior, can help

compensate for bad data.

• Monte Carlo idea can be used to handle the non-Euclidean nature of

filtering problem.



OPEN ISSUES

• Filtering may not be enough. Filtering is a greedy procedure that

estimates one subspace at a time. Need procedures that jointly estimate

subspaces for some neighboring times.

• Need more interesting dynamic models for use in nonlinear filtering on

Grassmann manifolds. Zero velocity, constant velocity models are only to

get started. Remember, past observations form prior for future.

• Need more efficient algorithms for performing calculus on Grassmann

manifolds.

• Need to focus on that subset of Gn,d that relates to the array manifold.
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