BAYESIAN ESTIMATION AND TRACKING OF DYNAMIC SIGNAL SUBSPACES

Anuj Srivastava

Department of Statistics Florida State University

SPAWC, Tuesday, July 13^{th} , Lisbon.

TOOLS FROM DIFFERENTIAL GEOMETRY

Quick Comments:

- 1. Timely for signal processing. Statistics was a new tool two to three decades ago; differential geometry is a new tool now.
- 2. Difficult topic for engineering community but there are rewards. Starting cost is high. Perhaps, there should be tutorials at conferences.
- 3. There is a lot more research to be done, especially in applications, and even in theoretical areas.
- 4. Such methods are increasingly popular in other areas such as computer vision and pattern recognition.

OUTLINE

- 1. Subspace Estimation/Tracking in Signal Processing
- 2. Formulation of Nonlinear Filtering for Subspace Tracking
- 3. Geometry of Grassmann Manifolds
- 4. Prior: Subspace Dynamics
- 5. Monte Carlo methods for Nonlinear Filtering
- 6. A Simple Experiment
- 7. Summary and Open Issues

Motivation, Explanation, and Demonstration

SIGNAL SUBSPACE TRACKING

For d signal transmitters

observed using n sensors:

$$y_{t,i} = D(\Theta_t)s_t + \mu_{t,i}, \ i = 1, \dots, k$$

- $s_t \in \mathbb{C}^d$ is the signal amplitude,
- $\Theta_t \in [0,\pi)^d$ is the vector of transmitter locations at time t,
- $D(\Theta_t) \in \mathbb{C}^{n \times d}$ is the matrix of direction vectors, and
- $\mu_{t,i} \in \mathbb{C}^n$ is additive noise.
- $y_{t,i} \in \mathbb{C}^n$ is the i^{th} observation vector at time t. $\mathbf{y}_t = [y_{t,1}, \dots, y_{t,k}] \in \mathbb{C}^{nk}$.

SIGNAL SUBSPACE ESTIMATION

Classical Approach

- Assuming, additive white Gaussian noise, $\mu_{t,i} \sim CN(0, \sigma^2 I_n)$ Each time can be treated independently from other times.
- Maximum likelihood estimate (MLE) is derived as follows:

$$(\hat{s}_t, \hat{\Theta}_t) = \operatorname*{argmin}_{s_t, \Theta_t} \|\mathbf{y}_t - D(\Theta_t)s_t\|^2$$

– First, fix Θ_t and maximize over s_t :

 $\hat{s}_t = (D^{\dagger}D)^{-1}D^{\dagger}\mathbf{y}_t$, where $D \equiv D(\Theta_t)$.

- Substituting it back, we get

$$\hat{\Theta}_t = \underset{\Theta}{\operatorname{argmin}} \| (I - D(D^{\dagger}D)^{-1}D^{\dagger}) \mathbf{y}_t \|^2$$

Or,

$$\hat{\Theta}_t = \operatorname*{argmax}_{\Theta} \|D(D^{\dagger}D)^{-1}D^{\dagger}\mathbf{y}_t\|^2$$

 $D(D^{\dagger}D)^{-1}D^{\dagger}$ is the projection onto the subspace (of \mathbb{C}^n) spanned by d columns of D.

- If the columns of D are linearly independent (signal transmitters are not too close), then a d-dimensional subspace of \mathbb{C}^n is of interest.

SIGNAL SUBSPACE ESTIMATION

So, the problem can be solved in two steps:

- Step 1: Subspace Estimation: A subspace can be represented by an orthonormal basis (non-uniquely) or by a projection matrix (uniquely).
 Task:
 - Solve for a basis S_t such that span $(S_t) = \text{span}(D_t)$. S_t is an $n \times d$ unitary matrix.
 - Or, estimate a projection matrix P_t that best fits the data. $P_t \in \mathbb{C}^{n \times n}$, $P_t^{\dagger} = P_t$, $P_t^2 = P_t$, rank(P_t) = d.

For computational reasons, we choose a basis representation.

2. Step 2: Angle Estimation: Solve for the angles Θ_t that best match the estimated subspace.

```
This talk is about Step 1.
```

SIGNAL SUBSPACE TRACKING

plusses denote observations at time t_1

dots denote observations at time t_2

An interesting problem is subspace tracking when data is occasionally very bad (transmitter obscuration, noise burst, etc).

SIGNAL SUBSPACE TRACKING

Goal: To utilize dynamics of subspace to improve estimation. To estimate temporal evolution of subspace rather than individual estimation. Path estimation instead of point estimation.

Problem Statement: Given measurements $\mathbf{y}_{[1:T]} \equiv \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_T$, estimate the subspace sequence (via unitary bases) S_1, S_2, \dots, S_T .

Filtering: A greedy solution is that given all the measurements up to time t, estimate the basis S_t .

Some Issues:

- 1. On what space this filtering problem is to be solved? The set of all (complex) d-dimensional subspaces of \mathbb{C}^n is called *Grassmann manifold* $\mathcal{G}_{n,d}$.
- 2. What tools are available to us to solve such a filtering problem? Kalman Filter? Nonlinear Filtering, or Non-Euclidean Filtering?

KALMAN FILTERING

Use a state equation and an observation equation:

State equation : $x_{t+1} = f(x_t) + \nu_t$ Observation equation : $y_{t+1} = g(x_{t+1}) + \mu_t$

Then, find the mean and covariance associated with the posterior at time t

 $P(x_t|y_{[1:t]}).$

If f and g are known linear functions, (and μ_t , ν_t are independent Gaussian), then Kalman filtering provides exact solution.

Two Problems:

- 1. Kalman Filter does not directly apply to nonlinear manifolds.
- 2. We need some form of a state equation on $\mathcal{G}_{n,d}$. We do have an observation model.

BAYESIAN NONLINEAR FILTERING

Nonlinear Manifolds: Kalman filtering does not apply, but Monte Carlo methods do!

Use nonlinear filtering equations: Under usual Markov assumptions,

Predict :
$$P(S_{t+1}|\mathbf{y}_{[1:t]}) = \int_{S_t} P(S_{t+1}|S_t) P(S_t|\mathbf{y}_{[1:t]}) dS_t$$

Update : $P(S_{t+1}|\mathbf{y}_{[1:t+1]}) = \frac{P(\mathbf{y}_{t+1}|S_{t+1}) P(S_{t+1}|\mathbf{y}_{[1:t]})}{P(\mathbf{y}_{t+1}|\mathbf{y}_{[1:t]})}$

- $P(S_{t+1}|S_t)$: comes from the state equation, or subspace dynamics
- $P(\mathbf{y}_t|S_t)$ comes from the likelihood function.

L

Next, we develop a model for subspace dynamics.

GRASSMANN MANIFOLDS: BACKGROUND

- Let the columns of $S \in \mathbb{C}^{n \times d}$ denote an orthonormal basis of a d-dimensional subspace of \mathbb{R}^n .
- $\mathbb{U}(d) = \{ O \in \mathbb{C}^{d \times d} | O^{\dagger} O = I_d \}.$
- Define an equivalence class of bases:

 $[S] = \{SO : O \in \mathbb{U}(d)\}.$

[S] contains all orthonormal bases that span the same subspace. [S] denotes a subspace and S denotes a particular basis.

Grassmann manifold:

$$\mathcal{G}_{n,d} = \{ [S] : S \in \mathbb{C}^{n \times d}, S^{\dagger}S = I_d \} .$$

 $\mathcal{G}_{n,d}$ has real dimension = 2d(n-d).

GEOMETRY OF GRASSMANN MANIFOLD

- Grassmann manifolds are quotient spaces of unitary groups.
- Consider the embedding: $\phi : (\mathbb{U}(d) \times \mathbb{U}(n-d)) \mapsto \mathbb{U}(n)$, given by:

$$\phi(V_1, V_2) = \left[\begin{array}{cc} V_1 & 0\\ 0 & V_2 \end{array} \right]$$

This way $\phi(\mathbb{U}(d),\mathbb{U}(n-d))$ is a subset of $\mathbb{U}(n).$

• Consider an equivalence relation in $\mathbb{U}(n)$:

$$Q_1 \sim Q_2 \,$$
 if and only if $\, Q_1 = Q_2 \left[egin{array}{cc} V_1 & 0 \ 0 & V_2 \end{array}
ight] \,,$

for some $V_1 \in \mathbb{U}(d)$, and $V_2 \in \mathbb{U}(n-d)$.

The quotient space $\mathbb{U}(n)/\sim \text{or }\mathbb{U}(n)/(\mathbb{U}(d)\times\mathbb{U}(n-d))$ is a complex Grassmann manifold $\mathcal{G}_{n,d}$.

GEOMETRY OF UNITARY GROUP

The set of unitary matrices is not a vector space. It is a group under matrix multiplication.

- 1. Tangent Spaces:
 - At $I_n \in \mathbb{C}^{n \times n}$, the space of vectors (actually, matrices) is given by:

$$T_{I_n}(\mathbb{U}(n)) = \{ A \in \mathbb{C}^{n \times n} | A^{\dagger} + A = 0 \} .$$

The set of Hermitian skew-symmetric matrices.

• At any other point $Q \in \mathbb{U}(n)$, the tangent space is:

$$T_Q(\mathbb{U}(n)) = \{ QA \in \mathbb{C}^{n \times n} | A^{\dagger} + A = 0 \} .$$

Assume the usual Euclidean inner product on tangent spaces.

2. Geodesic Flows: Geodesics are one-parameter flows

$$t \mapsto Q \exp(tA)$$
, where $A \in \mathbb{C}^{n \times n}$, $A^{\dagger} + A = 0$.

This is a geodesic flow starting at Q and in the direction of A.

We want tangent spaces and geodesic flows on Grassmann manifolds.

GEOMETRY OF GRASSMANN MANIFOLD

• Let
$$J = \begin{bmatrix} I_d \\ 0 \end{bmatrix} \in \mathbb{C}^{n \times d}$$
 denote the first d columns of I_n

- For any $Q \in \mathbb{U}(n)$, the matrix $[QJ] \in \mathcal{G}_{n,d}$. Multiplication on right projects from $\mathbb{U}(n)$ to $\mathcal{G}_{n,d}$.
- ϕ induces an embedding $d\phi$ from tangent spaces to tangent spaces:

$$d\phi: (T_{V_1}(\mathbb{U}(d)) \times T_{V_2}(\mathbb{U}(n-d))) \mapsto T_{\phi(V_1,V_2)}(\mathbb{U}(n)) ,$$

given by:

$$d\phi(A_1, A_2) = \left[\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array} \right] ,$$

for some $V_1 \in \mathbb{U}(d)$, and $V_2 \in \mathbb{U}(n-d)$.

• A vector tangent to $\mathbb{U}(n)$ projects to a tangent to $\mathcal{G}_{n,d}$ if and only if it is orthogonal to the range of $d\phi$.

GEOMETRY OF GRASSMANN MANIFOLD

1. Tangent Space: For an $[S] \in \mathcal{G}_{n,d}$, let $Q \in \mathbb{U}(n)$ such that QJ = S. Q is not unique; it has to be computed efficiently. Then, the tangent space

$$T_{[S]}(\mathcal{G}_{n,d}) = \{QAJ|A = \begin{bmatrix} 0 & B \\ -B^{\dagger} & 0 \end{bmatrix}, B \in \mathbb{C}^{d \times (n-d)}\}.$$

2. Geodesic Flow:

A Geodesic in $\mathbb{U}(n)$ is also a geodesic in $\mathcal{G}_{n,d}$ as long as it is orthogonal to every equivalence class it meets

Geodesics on $\mathcal{G}_{n,d}$ is given by one parameter flows:

 $t \mapsto Q \exp(tA) J$.

We will denote the flow by $\Psi_S(t, A) = Q \exp(tA) J$.

TWO IMPORTANT TASKS

To perform differential calculus and statistics on $\mathcal{G}_{n,d}$, two operations are repeatedly used:

- 1. Exponentiation: Given $[S_0]$ and a tangent direction A, find elements along the geodesic $\Psi(t)$ at t_1, t_2, \ldots
- 2. Logarithm: Given two subspaces $[S_0]$ and $[S_1]$, find the direction A (or B inside A) such that $\Psi(0) = [S_0]$ and $\Psi(1) = [S_1]$.

We want to be able to perform these tasks efficiently.

GENERAL BACKGROUND

• Let the SVD of $S_0^{\dagger}S_1 \in \mathbb{C}^{d \times d}$ be given by $(S_0^{\dagger}S_1) = U_1 \Gamma V_1$.

- Define canonical bases $\overline{S}_0 = S_0 U_1$ and $\overline{S}_1 = S_1 V_1$, and canonical flow $\overline{\Psi}(t) = \Psi(t)U_1 = Q \exp(tA)JU_1$.
- $\|\Gamma\|$ is the length of geodesic between two subspaces.

TASK 1: EXPONENTIATION

Goal: Given S_0 , Q and $B \in \mathbb{C}^{(n-d) \times d}$, construct $\overline{\Psi}(t)$.

- Let $\tilde{U}_2 \Theta U_1^{\dagger}$ be the SVD of B^{\dagger} .
- Determine $\Gamma(t) = \cos(t\Theta)$ and $\Sigma(t) = \sin(t\Theta)$.
- Since $\overline{\Psi}(t) = Q \exp(tA) J U_1$, we have

$$\dot{\overline{\Psi}}(0) = Q \begin{pmatrix} 0 \\ -B^{\dagger} \end{pmatrix} U_1 = -C_0 \tilde{U}_2 \Theta = -D\Theta$$
 (1)

for $D \equiv C_0 \tilde{U}_2$. Compute D using Q, B, Θ , and U_1

• Then,

$$\overline{\Psi}(t) = S_0 U_1 \Gamma(t) - (C_0 \tilde{U}_2) \Sigma(t) = S_0 U_1 \Gamma(t) - D \Sigma(t).$$

Exponentiation can be accomplished in ${\cal O}(nd^2)$ computations

TASK 2: LOGARITHM

Goal: Given two subspaces $[S_0]$ and $[S_1]$, and Q, find the direction matrix $B \in \mathbb{C}^{d \times (n-d)}$.

• Compute $QS_1 \in \mathbb{C}^{n \times d}$. Compute its thin CS decomposition, i.e.,

$$QS_{1} = \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} U_{1} & 0 \\ 0 & U_{2} \end{pmatrix} \begin{pmatrix} \Gamma(1) \\ -\Sigma(1) \\ 0 \end{pmatrix} V_{1}^{T}$$
$$= \begin{pmatrix} U_{1} & 0 \\ 0 & \tilde{U}_{2} \end{pmatrix} \begin{pmatrix} \Gamma(1) \\ -\Sigma(1) \end{pmatrix} V_{1}^{T}$$

This decomposition costs ${\cal O}(nd^2)$ (as a generalized SVD).

• Determine Θ via the \arcsin or \arccos that is numerically reliable, and evaluate $B = \tilde{U}_2 \Theta U_1^{\dagger}$.

SUBSPACE DYNAMICS

We want to model (statistically) evolution of $[S_0], [S_1], \ldots, [S_t]$ in $\mathcal{G}_{n,d}$.

Let
$$A_t = \begin{bmatrix} 0 & B_t \\ -B_t^{\dagger} & 0 \end{bmatrix}$$
 be the direction such that:
 $S_{t+1} = Q_t \exp(A_t)J, \ S_t = Q_tJ.$

• Zero velocity or Stationary subspace model:

$$\frac{dB(t)}{dt} = \nu_t, \quad B_t \in \mathbb{C}^{d \times (n-d)} ,$$

where ν_t is zero-mean, complex Gaussian noise.

• Constant velocity model:

$$\frac{d^2 B(t)}{dt^2} = \nu_t, \quad B_t \in \mathbb{C}^{d \times (n-d)}$$

Leads to one-step prior model, $P(S_{t+1}|S_t)$, that is easy to sample from:

SEQUENTIAL MONTE CARLO METHOD

Given samples from the posterior at time t:

$$S_t^{(i)} \sim P(S_t | \mathbf{y}_{[1:t]}), \ i = 1, 2, \dots, N.$$

The goal is to generate samples from the posterior at times t + 1.

1. **Prediction**: Use the prediction equation

$$P(S_{t+1}|\mathbf{y}_{[1:t]}) = \int_{S_t} P(S_{t+1}|S_t) P(S_t|\mathbf{y}_{[1:t]}) dS_t$$

For an $S_t^{(i)}$, let $\tilde{S}_{t+1}^{(i)} \sim P(S_{t+1}|S_t)$.

For the constant velocity model, set $A_t = A_{t-1} + \mu_{t-1}$, and set

$$\tilde{S}_{t+1}^{(i)} = Q_t^{\dagger} \exp(A_t) J \,.$$

2. Update: Importance Sampling

$$P(S_{t+1}|\mathbf{y}_{[1:t+1]}) = \frac{P(\mathbf{y}_{t+1}|S_{t+1})P(S_{t+1}|\mathbf{y}_{[1:t]})}{P(\mathbf{y}_{t+1}|\mathbf{y}_{[1:t]})}$$

Set
$$w_{t+1}^{(i)} = P(\mathbf{y}_{t+1} | \tilde{S}_{t+1}^{(i)})$$
, and set $\tilde{w}_{t+1}^{(i)} = w_{t+1}^{(i)} / \sum_{i} w_{t+1}^{(i)}$.

3. Resampling: Generate

$$S_{t+1}^{(i)} \sim \{\tilde{S}_{t+1}^{(i)}, i = 1, \dots, N\}$$
 with probabilities $\{\tilde{w}_{t+1}^{(i)}, i = 1, \dots, N\}$

We have recursively generated samples from the posterior at time t + 1.

We still have to compute an estimated mean subspace, or covariance, or other statistics.

ESTIMATION OF MEAN SUBSPACE

Definition and estimation of mean on $\mathcal{G}_{n,d}$.

Let $d(S_1, S_2)$ be the geodesic distance between S_1 and S_2 in $\mathcal{G}_{n,d}$. Also, let $\mathcal{G}_{n,d}$ be embedded inside $\mathbb{C}^{n \times d}$, and let $||S_1 - S_2||$ denote the Euclidean distance after embedding. Mean under a probability density function f(p):

• Intrinsic mean:

$$\hat{p} = \underset{p \in M}{\operatorname{argmin}} \int_{M} d(p, u)^{2} f(u) \gamma(du) ,$$

• Extrinsic mean:

$$\hat{p} = \underset{p \in M}{\operatorname{argmin}} \int_{M} \|p - u\|^2 f(u) \gamma(du) ,$$

This can also be viewed as computing the mean in \mathbb{R}^n and then projecting it back to M. Extrinsic analysis implies emedding the manifold in a larger Euclidean space, computing the estimate there, and projecting the solution back on the manifold.

Bound on Estimation Error: Hilbert-Schmidt bound

$$HSB = \int_M d(\hat{p}, u)^2 f(u) \gamma(du) \ .$$

EXAMPLE OF MEAN ESTIMATION ON A CIRCLE

Given $\theta_1, \theta_2, \ldots, \theta_n \in S^1$.

1. Intrinsic Mean:

$$d(\theta_1, \theta_2) = \min\{|\theta_1 - \theta_2|, |\theta_1 - \theta_2 + 2\pi|, |\theta_1 - \theta_2 - 2\pi|\}$$

Then, find the mean

$$\hat{\theta} = \operatorname{argmin} \theta \sum_{i=1}^{n} d(\theta, \theta_i)^2 .$$

Solve this problem numerically.

2. An Extrinsic Mean: Let $z_i = e^{j\theta_i} \in \mathbb{C}$, i = 1, ..., n. Then, $\hat{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$, and set $\hat{\theta} = \arg(\hat{z})$.

BAYESIAN SUBSPACE TRACKING

Toy Experiment:

- Generated signal motion using a smooth Markov process on angular locations.
- Simulated data using $\mathbf{y} = D(\Theta_t)s_t + \nu_t$.

Models Assumed:

- Prior Model: Zero velocity model
- Likelihood Model: Additive white Gaussian noise model.

Performance Analysis: Compared three different methods

- Maximum likelihood estimation,
- Adaptive tracking (uses a moving window on data, followed by MLE), and
- Nonlinear tracking on $\mathcal{G}_{n,d}$.

Left panel: Motion of two signal sources

Right panel: Error in subspace estimation using three different methods

TRACKING EXPERIMENT 2

Left panel: Motion of two signal sources

Right panel: Error in subspace estimation using three different methods

SUMMARY

- Signal subspace tracking can be posed as that of estimating a stochastic process on a Grassmann manifold.
- It is important, and interesting, to utilize the intrinsic geometry of the underlying manifold.
- A prior on subspace motion, maybe a smoothing prior, can help compensate for bad data.
- Monte Carlo idea can be used to handle the non-Euclidean nature of filtering problem.

OPEN ISSUES

- Filtering may not be enough. Filtering is a greedy procedure that estimates one subspace at a time. Need procedures that jointly estimate subspaces for some neighboring times.
- Need more interesting dynamic models for use in nonlinear filtering on Grassmann manifolds. Zero velocity, constant velocity models are only to get started. Remember, past observations form prior for future.
- Need more efficient algorithms for performing calculus on Grassmann manifolds.
- Need to focus on that subset of $\mathcal{G}_{n,d}$ that relates to the array manifold.

REFERENCES TO OUR WORK

- Estimation, filtering and MCMC on special Euclidean groups.
 Application: Pose estimation and target tracking using signals and images
 IEEE Trans. on SP, Nov. 1995, J. of Stat. Planning and Inference, March 2002
- Statistical bounds (extrinsic) for Bayesian estimators on orthogonal groups. Application: Pose estimation in image analysis
 IEEE Trans. on Pattern Analysis and Machine Intelligence, August 98
- Estimation, MCMC and statistical bounds (extrinsic) on Grassmann manifolds.
 Application: Signal subspace estimation in a Bayesian framework using projection matrices
 IEEE Trans. on SP, May 00
- Bayesian nonlinear filtering and SMC on Grassmann manifolds.
 Applications: Signal subspace tracking
 Advances in Applied Probability, March 04

- Extrinsic statistics of estimators on Lie groups and their quotient spaces.
 Applications: several from signal and image processing
 IEEE Trans. on SP, Feb 02
- Intrinsic stochastic optimization on Grassmann manifolds.
 Application: Optimal component analysis for image based object recognition IEEE Trans. on Pattern Analysis and Machine Intelligence, May 04
- Efficient algorithms for computations on Grassmann manifolds. Proc. of 12th Statistical Signal Processing Workshop, 2003